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ABSTRACT 

Parton Distribution Functions consistent with neutrino and mum deep inelastic scattering as 
well as Drell-Yan pair production results have been extracted. This analysis incorporates ex- 
perimental systematic errors which are the dominant errors in recent deep inelastic scattering 
experiments. The dependence of the results on factors such as kinematic cuts in the data, heavy 
target corrections, and choice of initial functional form are also explored. The form adopted is 

motivated by perturb&w QCD and particularly useful in exploring the small-x extrapolation 
of the distributions. This is crucial for studying the range of predictions for Collider, HEFLA, 
and SSC/LHC cross sections. Representative distribution function sets are presented in a very 

compact parametrised form both in the DIS and MS-bar rcnormalisation schemea. 
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1 Introduction 

The QCD Parton Model provides a comprehensive framework for describing general high energy 
processes in current and planned accelerators and colliders. In this framework, the cross-section 
QAB-,C for a hadron-ha&on collision process A + B + C f X, where C represents a final state of 
physical interest, is written as the convolution of a set of universal Parton Distribution Functions 
fi(+, Q) and parton-initiated fundamental hard cross- sections oab4c 

The process-independent p&on distributions are the key link between the physically measured 
cross-sections OAB+C and the basic processes of the theory o,b+c. The precise determination of 
these functions are of fundamental importance for theinterpretation of experimental results within 
the Standard Model and in any search for “new physics “. Several well-known parametrieations [ll of 
parton distributions extracted from early experimental data and using leading order QCD formalism 
have long been in wide use. Analyses based on more current data and incorporating next-to- 
leading order QCD evolution of the distribution functions have also recently become available r2, 31. 
However, most of these analyses use only limited sets of data, some of which have since been 
significantly revised. Most of these analyses do not include experimental systematic errors or 
explore the dependence of the results on such factors as kinematic cuts in the analysed data, 
heavy target corrections, choice of initial functional forms, etc. Since most modern applications 
of the QCD Parton Model either require a high degree of accuracy or involve extrapolation of the 
kinematic variables (z, Q) well beyond the measured range, all these factors can significantly affect 
the predictions. Thus, it is crucial to incorporate all available experimental information in the 
analysis and to adopt a procedure which allows one to systematically map out the range of possible 
behavior of the parton distributions within and beyond the current z and Q domain. 

A comprehensive review of the current status of DIS experiments and parton distribution anal- 
yses including a plan to compile an extensive database and to investigate all the relevant factors 
in such analyses was given at the 1988 Snowmass Workshop [*I. We report here first results of 
this global analysis and present representative parton distribution sets with a range of different 
behaviors in a simple and easy-to-use form. Finally, we discuss some of the physical consequences 
in current collider processes, as well as projections for HERA and SSC energies. Reports on the 
some detailed results, including specific effects of the various factors mentioned above and updates, 
will be given in subsequent publications. 

2 Parametrization of the Parton Distributions 

One of the goals of the present analysis is to adopt natural functional forms for the distributions 
which will be appropriate for parton distributions at all Q. The evolved distributions can then 
be given in a simple analytic form as is done with the initial distributions; and the parameters of 
the distributions become (slowly) varying functions of Q. This will minimize the special role of 
the arbitrarily chosen initial point of evolution and, more importantly, help us to visualize (hence 
gain some physical insight) on how the parton distributions actually evolve. It is also important to 
adopt parametrizations which are guaranteed to be positive definite for all values of z (as parton 
distribution functions should be) and which vary smoothly over the entire range of z. 

Although there is no real theory on the correct functional form of the parton distributions in 
the framework of QCD, the above considerations plus the natural occurrance of logarithmic factors 
in perturbative quantum field theory lead us to adopt the an&a: 

zf(z,Q) = eAozA’(l - z)“‘lnA” zlnA’(l - z) (1) 
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Here, for clarity, we have suppressed a parton flavor label. The A-coefficients will be referred 
to as “shape parameters” in our data-analysis. In addition to the features mentioned earlier, an 
important advantage of this parametrization is that it provides a simple and versatile way to study 
the small-z behavior of the parton distributions. By selectively choosing A1 and/or Aa as active 
parameters, we can use existing data to explore the full range of power- and/or logarithmic-law 
small-z extrapolations of the parton distributions from the current range. (Cf. the section on 
small-z eztrapofation ojparton distributiona later.) 

Existing parton distribution analyses, as a rule, do not discuss the effects of different choices of 
the functional forms of the initial distributions or the number of free parameters used tocharacterize 
these distributions in the data-fitting. This can be, however, an important issue in this type of 
analysis, especially when the data set or the kinematic range used is relatively limited. Physical 
parameters such as Aqoo and familiar shape parameters, such as (a,P) in a?‘(1 - z)@, can depend 
sensitively on the choice of the functional form if it is not general enough. Conclusions drawn on 
these parameters or the assignment of errors to these parameters, without investigating this form 
dependence, do not necessarily reflect real physics. Furthermore, a specific set of ad hoc functions 
for the initial distributions can become inappropriate when additional data sets from different 
processes are Included in later analyses. In other words, for a meaningful parton distribution 
analysis, the choice of functional forms and parameters must be general, flexible, and responsively 
constructed. 

We have attempted to address this problem systematically by allowing, in principle, the rather 
general multi-parameter functional form, Eq.(l) for all relevant parton flavors, and adopting the 
following strategy to adjust the scope of our fitting parameters in the global analysis: at each stage 
of the parton distribution analysis, only those parameters in the proposed general parametrization 
form are activated for which the data sets considered have discriminatory power. The number of 
parameters are increased, when appropriate, as new data sets are added. In this way we maintain 
flexibility at each stage, do not lose touch with physics, and ensure that the output from the fitting 
program be reasonably unique throughout. The next section describes how this strategy is applied 
to the analysis of D.I.S. data. In our work so far, we have found it sufficient to use the functional 
form (1) without the factor ln(1 - z) A4; hence we shall omit it in subsequent discussions. It is 
conceivable, however, that such a factor may be required in future analysis of a wider range of 
experimental data. 

3 Procedure for Analysing Deep Inelastic Scattering Data 

The D.I.S. data sets included in this analysis are CDHSW151 
junction with EMC @l and BCDMS [‘I 

neutrino scattering results in con- 
muon scattering experiments.’ These data sets were used 

in various combinations to test both the consistency of the experimental results and the stability 
of the fitting results. 

The effect of experimental considerations were examined such as the sensitivity of the results 
to minimum Q’- and W- cuts on the data selected, the influence of an “EMC effect” correction 
when combining results from light and heavy targets, and the inclusion of systematic in additon to 
statistical errors. We examined the stability of fitting results as the values of Q2- and W- cuts are 
varied; and determined that, without a priori knowledge of higher twist contributions, consistent 
results are obtained with Q’ > lOGeVa and W > 4GeV. These default cutoff values preserve the 

‘Them data sets are the only high statistics deep inelastic scattering ones with Uormatican on ayatcmatic errors) 
svailablc to w. 
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bulk of the high statistics data and decrease any possible contamination of higher twist effects by 
at least a factor of 4 compared to most recent global analyses. 

It is, of course, imperative to include the experimental systematic errors, especially when data 
from several different high statistics experiments are included. This has not been done system- 
atically in previous published parton parametrization analyses. The statistically rigorous way of 
combining statistical and systematic errors requires that the fit consist of a “loop” where the exper- 
imental central values are shifted by their corresponding systematic errors and then these shifted 
values are used in the minimum xs or maximum likelihood part of the fit which takes account of 
the statistical error. Considering the large number of data points included in this analysis as well 
as the various systematic effects often quoted for each point (e.g. 4 separate systematic errors from 
the BCDMS data set), such aprocedure would require a prohibitively large amount of computing 
power. For most of our fits, we use the conventional procedure of combining in quadrature the 
statistical error with a single combined systematic error. We do investigate how the results change 
if systematic errors are left out (as is done by most of the existing PDF fits) on the one hand, or if 
the systematic and statistical errors are added linearly on the other. We plan to do a more thorough 
error analysis on a smaller set of data in the future to assess the importance and usefulness of any 
more rigorous and elaborate procedure. 

The intluence of theoretical factors on fitting results were also examined. Among these were the 
use of l-loop or ~-loop evolution kernels and the considerations concerning the choice of appropriate 
functional forms for the parton distributions as discussed earlier. In practice, we use the following 
parametrization of the initial distributions: 

Zj’=(z,Q) = e4zA:(l - ~)~:ln~:(l t A) 
z 

where a is the pa&on-flavor label, and the lnz factor of Eq.(l) has been slightly modified to make 
it positive definite and to avoid a potential unwanted singular behavior near z = 1. All calculations 
reported below use the full 2- loop evolved 181 parton distributions and the appropriate l-loop Wilson 
coefficientslpl for the structure functions. The program used for numerical solution of the 2-loop 
evolution equation has been used previously to study the small-r behavior of parton distribution 
functions and has provided critical tests of other existing evolution programs (and found to be 

accurate). 11°1 
Our procedure consists of the following steps. We begin with the CDHSW neutrino-iron scat- 

tering results for zFs which depends only on the sum of all valence quark distributions. We fit data 
using an initial ~Iooot- blind valence quark distribution of the form Eq.(l) withthe shape parame- 
ters and Apoo as the fitting parameters. The normalization parameters A,, for the valence quarks 
are determined by the quark-number sum rules. Excellent fits are obtained with only three shape 
parameters (Al, AZ, Aa). We note that +Fs is particularly suited to determine the parameter Al for 
valence quarks (which controls the smalI-+ behavior of the valence), and the QCD parameter &co. 
The resulting value of Al is fixed at this point. Since data on I& is not as statistically accurate as 
those on J’s, we improve the determination of the shape parameters As and As for valence quarks 
by including the CDHSW Fs data with a > 0.3 in the fit as well. The small contribution of sea- 
quarks and gluons to Fs in this region is verified by including a conventional sea/gluon contribution 
and noting no significant change in the fit results. We again get excellent fits which yield “better” 
values of Al and As for the (flavor-blind) valence quarks s. We now introduce the muon scattering 

‘For us, better fits means fitm with lower valuea ofx’ per degree ofkecdom. With the crude procedure of combining 
statistical and systematic errors in quadratllre or in linear form, the meaning of the absolute value of x’/dof ia not 
clear. However, its relative value does give a good measure of better or oorae fits. 
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results. We begin with the BCDMS data on hydrogen and deuterium keeping the z > 0.3 cut. 
Since u-quarks and d-quarks contribute unequally to the muon structure functions, distinct shape 
parameters ATd and ATd are introduced and determined at this stage. In these fits, we introduce 
an additional parameter-an overall relative normalization factor between the two experimental 
data sets-to be determined by the fit. We now perform the previous step again using CDHSW 
data along with EMC (ln place of BCDMS). Finally, both EMC and BCDMS data are combined 
with the neutrino scattering data to determine whether a reasonable combined fit can be obtained. 
With these better-determined A2d and A;,d parameters, we go back to determine improved values 
of theAl-parameter for the valence quarks and AQCD. We then constrain this set of valence quark 
shape parameters within limited range (3a.d.) in the next step of analysis. 

The next step is to determine the sea and gluon parameters by dropping the e cut in fitting 
the combined neutrino and muon data. In this exercise, we again use CDHSW data with BCDMS 
alone, then with EMC alone and finally with both data sets together. An important new feature 
of our fits compared to those in the literature, made possible by the use of the parametric form 
(1) for the parton distributions, is that we selectively use the parameters Al and As for the gluon 
and sea-quarks as fitting parameters, thus letting data determine these parameters (either singly 
or both) which control behavior of the parton distributions when extrapolated to very small values 
of z. 

Even with the results of the very high statistics deep inelastic scattering experiments currently 
availables, the individual parton distributions cannot be fdly differentiated since the data is not 
directly sensitive to the glum and the individual sea distributions. For most of our analysis, we 
take the As-parameter for the gluon to be one unit less than that of the sea quarks (reflecting the 
conventional wisdom that the gluons are the source of the sea quarks hence must have a harder z 
distribution). We begin with SU(3) y s mmetric sea quark distributions and obtained excellent fits. 
We also tried SU(Z)-symmetric sea together with a strange quark content of the order indicated by 

D.I.S. dimuon data[lIl, and unrestricted sea and gluon distributions. Neither the added parameters 
nor the added input improve the quality of the (already satisfactory) fit; they only make the fitting 
parameters under-determined. Clearly, additional data from other processes are needed to effect 
further flawor di&w&ztion among the glum and sea-quark distributions. 

As the last step of this analysis of D.I.S. data, we fine- tune all the active parameters-valence, 
sea and gluon-in a final multi-parameter “best fit” to the full data set chosen for that fit. The 
fits obtained in this way tend to have rather hard gluon distributions, characterized by Af of the 
order 3.5 to 4.5. But, as is generally known, D.I.S. data alone do not provide stringent constraints 
on the shape of the gluon distribution. 

4 Inclusion of Lepton-pair Production Data in the Analysis 

The remaining freedom in the shape parameters of the sea quarks and the gluon can be further 
constrained with the aid of other physical processes, notably the hadro-production of real or virtual 
vector bosons - 7,W, and 2. Among these, the best candidate is lepton-pair production via the 
virtual 7 (the Drell-Yan process) where the theory is relatively cleanlI~ and where high-statistics 
experimental data exist. For this iirst phase of our study, we only include results of the Fermilab 
E288 1131 and E605 [I*1 experiments of scattering of proton on nuclear target for which information 

‘We also included the heavy target data of EMC and BCDMS. H OWCYU, the larger systematic error8 of these data 
sets led to relatively small impact an the overall results. 
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on point-to-point systematic errors have been obtained from the authors.4 Other experiments 
with pion, kaon (as well as proton) beams do exist. However, we are interested only in parton 
distributions of the nucleon for the moment; and the lack of critical comparitive studies of existing 
experiments in lepton- pair production makes combining data from different sources difficult. 

We fit to the complete sets of published data on do/dQsdy from E286 and E605 using the NLO 
formulas of [12]. (Note that the MRS group L21 only uses the Qs-distribution.) We find that the 
inclusion of Drell-Yan data has an important impact on the global analysis. This is because the 
Drell-Yan cross-section in proton-nucleon scattering is particularly sensitive to the product of the 
u and @ distributions. Since certain linearcombinations of the u- and z-quark distributions are 
relatively well-determined in D.I.S., the additional handle on the product is very useful in helping 
to differentiate the sea-quark (ii) from the valence quark distribution. In addition, as we are 
performing a next-to-leading order analysis, the gluon distribution comes in here in a direct way. 

Because the strange and charm quarks make only a very small contribution to the cross-section, 
they are not well constrained. In principle, the Drell-Yan cross-section is sensitive to the normal- 
ization of the u- and d- anti-quark distributions; however, the experimental uncertainty on the 
relative normalization of the D-Y and D.I.S. cross-sections essentially neutralizes this sensitivity. 
Hence, we gain only information on the shape of these distributions. 

Thus, even with the addition of this new data, we still can not avoid making the simplifying 
assumption As(sea) = Az(gluon) + 1. Likewise, in most of OUT fits we choose the same A1 for 
the gluon and the sea-quarks; and, unless otherwise stated, assume SU(3) flavor symmetry for 
the latter. Improved quality data from direct photon production and W- and Z- production as 
well as semi-inclusive deep inelastic scattering, such as charm-production, will eventually furnish 
independent information on the gluon and individual sea-quark distributions, and allow the uncon- 
strained determination of these distributions. For the D.I.S. and D-Y data used in our analysis, 
we consistently get good overall fits with these simplifying assumptions. In comparison to fits to 
D.I.S. alone, as described before, these combined fits consistently favor a softer gluon-sea-quark 
distribution characterized by A? (=A;‘O - 1) of the order 6.5 - 7.5. 

It may be tempting to determine the gluon distribution from existing data on direct-photon 
production in hadron collisions. We decided not to include this process in OUT global analysis at 
this stagebecause of the following considerations: (i) current experimental results are rather limited 
in accuracy, in statistics, and in z-range coverage compared to D.I.S. and D-Y counterparts; (ii) 
the application of next-to-leading order QCD formalism to this process involve uncertainties which 
have yet to be clearly understood. However, noting that the often quoted gluon distribution from 
direct photon analyses 1151 appears to be much harder than that mentioned above, we have studied 
fits to the D.I.S. and D-Y data with the gluon shape parameter Af decoupled from that of the 
sea quarks. In particular, we studied fits with this parameter fied at 4. The resulting fits to the 
D.I.S. Fa data are comparable to our standard fits, but the x2 for the & and D-Y data sets are 
increased by 30 - 40% (cf. next section). We will comment more about the issue of hard vs. soft 
gluon distribution in the section on comparisons with other parton distribution sets. 

5 Results of Global Fits 

Because there is a wide range of possibilities on data- selection ( Qs-cut, W-cut, . ..). error handling, 
and choice of shape parameters, it is possible to obtain a large number of good fits to the above 

‘We thsnlt Chuck Brown and G.M. Lopes for discussions on this point. 
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mentioned experiments. In the course of this on-going study, we try to understand the systematics 
of these fits, and to identify physically relevant but unresolved features of the parton distributions. 
A comprehensive discussion of the details of these fits is outside the scope of this paper. We shall 
concentrate on: (i) the general features, (ii) a small set of representative results, and (iii) the most 
noteworthy consequences. 

With our usual choice of Qs-cut (lOGeVs), W-cut (4GeV), and error handling (systematic and 
statistical added in quadrature), the global fits to the BCDMS HZ & D2, CDHSW, and the E288 
& E605, data (referred to henceforth as the “B-fits”) involve 647 data points. The overall x’/dof 
for these fits is on the order of 0.8 and evenlydistributed among the data setss - indicating a 
large degree of consistency among these different physical measurements in the QCD framework. 
Correspondingly, the global fits to the EMC H2 & D2, CDHSW, and the E288 & E605 data with 
the same choice of kinematic cuts and error handling, (referred to henceforth as the E-fits) involve 
472 data points; the overall xs per degree of freedom is typically around 0.93. The x1 of the 
individual data sets varies between 0.65 - 0.85 for all sets except for the EMC D2 data set where it 
is around 1.5. Representative of these B and E-fits, Fig.1 shows the BCDMS hydrogen data with 
the Bl-fit (solid line) as well as the El-fit (dashed line); while Fig.2 shows the EMC hydrogen data 
and Fig.3 shows the CHHSW Fs data with corresponding curves obtained in the same fits. 

Finally, the global fits to ALL the data combined (referred to as the S-fits) involve 828 data 
points. The overall xs/dof range is 0.94 - 0.97; the xs/dof for the individual data sets are not as 
consistently distributed as for the B and E fits with the x”/dof for the EMC data sets about a 
factor of two higher than the rest. To illustrate the quality of these fits, we show one of them (Sl 
- solid line) in the comparison plots Fig.4 (BCDMS - Ds), Fig.5 (EMC - Dz), and Fig.6 (E605 - 
Drell-Yan). In all these plots, the experimental error bars represent the combined statistical and 
systematic errors. 

Given the well-publicized “disagreement” between the EMC and BCDMS data sets, the conven- 
tional wisdom is that it is not possible to obtain any meaningful combined fit to these two recent 
muon experiments. In studying this issue we have found it important to consider (i) the explicit in- 
clusion of experimental systematic errors, omitted in most comparisons of these experiments, which 
considerably narrows the gap between the data points; (ii) anoverall relative constant normalization 
between the experiments included in the fitting procedure which helps to bring the data sets in 
line for smaller values of z (where experimental errors are small) without introducing too much 
disagreement at larger z (where errors are big); and (iii) reasonable Qs-cuts, imposed for the QCD 
fits (in order to exclude non-perturbative effects), which also tend to exclude the region of most 
severe disagreement between the experiments. The relative normalization factors obtained in these 
combined fits agree quite well with those put forth independently by recent critical comparisons 
and reviews of these experiments @q. The quality of this combined fit can be questioned since, 
as mention previously, the x2 for the EMC data set is relatively high compared to those for the 
other data sets. However we refer the reader to Figs.4-6 (especially Fig.5 which yields the highest 
x2/&f among all data sets) to assess the quality of the data and the quality of this fit. 

‘WC hsvc added a 5 - 10% point-t-paint systematic c-m to the publiahcd E285 and E605 data points which only 
show statistical errors. This estimate is adopted after consultation with members of these experiments (cf. previous 
tootnate. 
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6 Comparisons with Existing Parton Distributions 

To compare our global fits to D.I.S. and D-Y data with previously published sets of parton distri- 
bution functions, we have to bear in mind that some crucial data sets used in earlier analyses have 
been significantly revised (e.g. compare the 1983 CDHS data[‘q with the new CDHSW results. [61); 
and that the very high statistics BCDMS muon data are not used by most existing published parton 
distribution sets. Thus, such distributions should not be expected to fit current accurate D.I.S. 
data to within the experimental errors. Fig.7 illustrates this fact by comparing a representative 
group of BCDMS hydrogen data with the structure function Fz calculated from the following parton 
distributions: our Bl set (dark-solid), EHLQ-1 (dashed), Duke-Owens-l [ll (light-solid), MRSB [‘I 
(dashdotted), and DFLM-NLLA[31 (dotted). Note that, of the last four sets, only MRSB used the 
BCDMS data in their analysis.s This plot illustrates that for QCD parton model studies requiring 
accuracy, the earlier well-known parton distribution sets are no longer sufficient. The fact that the 
DFLM set was obtained without using the muon data also clearly shows in this plot. 

Any direct comparison of distinct sets of parton distributions themselves must take into account 
the precise definition of the distribution function adopted as, in next-to-leading order of QCD, these 
quantities depend critically on the renormalization scheme used.’ Of the two recent published 
analyses, the DFLM sets are in the so-called DIS scheme (in which the gluon contribution to the 
total incIusiweF~ structure function is, by definition, absorbed into the quark distributions), whereas 
the MRS sets are in the (“universal”) m scheme. The precise definitions of parton distributions 
defined in these two schemes are given in Appendix I. In our analysis, we use the DIS scheme 
distributions in the fitting process for the practical reason that the comparison with J’z data, which 
dominate the fit, is made very simple. The results of these analyses, however, can be presented in 
any scheme with the proper transformation applied. 

To illustrate the scheme-dependence of NLO parton distributions, we show in Fig.8a a corn- 
parison of the gluon distribution at Qs = 10GeV” from our Bl fit in the DIS scheme (solid line), 
from the same fit in the m scheme (dashed), and from the MRSB set (dotted) which is in the 
KS scheme. This plot illustrates the importance of specifying the scheme in order to make any 
metigful discussion about “soft” or “hard” gluons. The conversion of the gluon distribution from 
one scheme to another necessarily turns a “soft” gluon distribution into a harderdistribution, since 
the redefinition (in particular, the convolution integral of the quark distribution with a splitting 
function) involves re-interpreting the gluons radiating off the (hard) valence quarks. (Cf. Appendix 
I for detailed formulas.) Thus, our relatively “soft” gluon distribution in the DIS scheme becomes 
much harder after conversion into the XS scheme. The apparent discrepency between our Af(6 - 7) 
parameter in the DIS scheme and the corresponding one adopted by MRS (- 4) disappears after 
conversion into the same scheme. In this connection, we note that: it is natural to expect a soft 
gluon distribution in the DIS scheme, as the contribution from the gluon to Fs is absorbed into that 
from the quarks by fiat; whereas in the ?X5 scheme, the gluons radiating off the valence are indeed 
counted as gluon partons. In Fig.Bb we show the comparison of the corresponding curves for the 
u-quark distribution. It is evident that because of the *e-interpretation of the partons engendered 
by the transformation between the two schemes, the u-quark distribution becomes slightly softer 
in the large-z region in the ?%‘5 scheme. Note that the y-axis in Fig.8b is in linear scale while that 
of Fig.8a is in logarithmic scale. We add that the numerical difference between the distributions 

eSince the MRS distributions are given in the m scheme, they arc fkst converted into the DIS scheme before 
substituting into the structure function foormula along with the other sets in this comparision. 

‘For recent reviews of this renornmlisstion scheme dependence and related issues, see [4] k [la]. 
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in the two renormalization schemes diminishes with increasing Q, becoming insignificant beyond 
Q2 = 100GeV2 or so. 

Because of the significant difference between the same parton distribution presented in the two 
distinct schemes in some kinematic regions, users of these distributions must pay close attention 
to the scheme in which the distributions are defined and use them accordingly - the distributions 
must be used in conjunction with hard matrix elements (Wilson coefficient), and DIS distributions 
with DIS matrix elements, . . . etc. This important point is often ignored in the literature where 
comparisons are frequently made between cross-sections calculated with MRS and DFLM distribu- 
tions (one in and the other in DIS scheme) convoluted with the 8-e hard matrix elements. Fig.6 
above shows explicitly how misleading such inconsistent use of parton distributions can become. 
We shall present our results in both schemes,so that our distributions can be used with hard matrix 
elements calculated in either scheme. 

7 Behavior of Parton Distributions - Reparametrization 

One of the important motivations for adopting the functional form, Eq.(l) is that it is naturally 
suited to represent the parton distributions at any value of Q. Thus, although we must resort 
to rather involved numerical integration of the evolution equations during the fitting process, it 
is possible to re-express all the final parton distributions in this simple functional form. The 
QCD-evolution of the distribution functions then manifests itself in Q-dependent A-coefficients. 
Because the natual evolution variable is ln(ln(Q)), we can expect rather weak Q-dependence of 
these coefficients which are then easily parametrized by simple functions. 

At the current level of accuracy, we found it possible to parametrize the parton distribution 
functions for all flavors and all Q in the same functional form (2) as used for the initial distributions. 
In Fig.9 w-e show the Q-dependence of the A-coefficients for the various flavors from one of our 
parton distribution sets-the Bl-fit. We see that a substantial number of these coefficients are 
almost linear in the natural evolution variable, whereas the rest can easily be represented by 
quadratic functions over the Q range from threshold to 10,000 GeV. This plot exhibits clearly the 
steady increase in the powers of (1 -z) and ln(l/ z ) as well as the decrease of the power of 2 and the 
normalization factor, all manifestations of the well-known softening of the parton distributions with 
increasing Q. Given the well behaved functional dependence, we represent our parton distributions 
in the form (Z), and parametrize the A-coeflicients for each p&on flavor as: 

A’(Q) = C; + C;T(Q) + C;T(Q)” (3) 

where i = 0 - 3, and 

A!3 T(Q) = ‘“h9R (4) 

The constant coefficients are determined by an overall fit to the particular parton distribution 
function over the range (lo-’ < + < 1,3GeV < Q < 10’GeV). The resulting parametrization 
proves to be accurate to within the same degree as the original fit to data, thus it is a faithful 
representation of fitting results. This means each set of parton distributions is specified by a 
compact table of the C- coefficients. A typical table of such coefficients - that corresponding to 
the S fit _ is given as Table la. In view of the discussion on the scheme dependence of the parton 
distributions, we also present the coefficients of the parametrization for the same fit in the XS 
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scheme in Table lb.8 
Tables of coefficients from fits E, Bl, and B2, mentioned in the text, are given in Appendix II. 

For the readers’ convenience we present in Appendix III two additional fits which can be useful 
in various applications. The fist one is a next-to-leading order fit of the combined data (SN-fit) 
which includes a non-SU(3)-symmetric sea (as suggested by some neutrino d&muon studies). The 
second one is a leading order fit of the combined data (SL-fit) which should be used in applications 
where leading order hard scattering matrix elements are employed. 

Although our functional form (2) differs from conventional ones only in the ln(l/z) factor, this 
differenceis quite significant. In particular, for the initial distributions, the values of Al and AZ 
should not be compared directly with the corresponding parameters in published parton distribu- 
tions sets. The ln(l/z) factor has a direct influence on the effective powers of I and (1 - z) in the 
small-z and large-z regions respectively. For the purpose of comparison, we include at the end of 
each Table a list of “equivalent conventional coefficients” Bo - 83 which appear in the functional 
form? 

at Q: = 5.0GeV’. 

zf(z,Q;) = eBo&(l - ~)~‘(l+ B3z) (5) 

We have also tried to use the functional form, Eq.(5), to parametrize the parton distribution 
functions for all Q with Q-dependent B-coefficients, as a possible alternative to our approach. 
We found, however, it is not possible to fit the gluon and sea-quark distributions to this form 
with any reasonable degree of accuracy for Q values beyond about 50 GeV. The contrast with the 
parametrization (2) in this regard clearly support our original expectation that the latter is natually 
suited to represent the QCD-evolved parton distributions, at least in the perturb&iv= framework. 

We summarize the distinctive advantages of the Q-dependent parametrization of the parton 
distribution functions, Eq.(2), compared to conventional ones based on expansions in terms of 
polynomials (such as the above) or other orthogonal functions (such as Chebyshev polynomials, 
used by EHLQ): (i) It is compact--the maximum size of the table of C-coefficients is a 3 x 4 x 9 
matrix, for the case of 6 quark flavors with no symmetry assumed for the sea. The size is smaller 
for less number of active flavors and/or with any asumptions on symmetry of thesea-quarks. (ii) 
The parton distributions are always positive definite for all values of (x,Q). (iii) These functions are 
smoothly varying in both B and Q, thus never lead to pathological behaviors even when they are 
used (intentionally or inadvertently) outside the original range-as often happens in applications of 
parton distributions to very high energy processes over some part of the phase space integration. (iv) 
The functional form is ideally suited to explore the small-z behattior of the parton distributiom- 
an area of central importance for application of the QCD parton model framework to current and 
future high energy processes. 

8 Range of Validity of Distributions 

Strictly speaking, the distribution functions presented in this paper, as with all other published 
distributions, are valid only within the range of variables (z, Q) covered by the data sets used in 

‘The &on distribution transformed from the DIS tom scheme ia somewhat more di&ult to parametrize in this 
compact form for all x. The psrametrisstion is obtained by performing a fit for the region z < 0.35 which contains 
most of the gluona. The dilferencc between the extrapolation beyond this region according to our functional form 
and the perturbetivc formula lies well within the overall uncertainty of our knowledge of G(x). 

‘The advantage of this form ia that the parametera & and Bz are prhmily responsible for the behavior of f(z, Q) 
in the regions z - 0 and z - 1 respectively. 
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the global analysis. This means, for the current analysis, approximately, 0.03 < z < 0.75 and 
5 < Q’(GeV’) < 250. lo However, the most important feature of the QCD parton model is that 
it allows us to use the parton distribution functions determined at current energy scales to make 
predictions on all hard processes at much higher energies and shorter distances. In particular, QCD 
can reliably predict the Q-dependence of these distributions through the renormalization group (or 
evolution) equation. Thus, based on perturbative QCD, these distribution functions can be trusted 
to very large values of Q provided the evolution is done correctly. 

Since we present our results in the form of a parametrization of the evolved distributions, one 
should also ask the range of applicability and accuracy of this parametrization. We obtain our 
parametrizations by fitting the numerically evolved distributions to the adopted functional form 
over the range 5 < Qz(GeVz) < 10’ to an accuracy comparable to that of the experimental data 
used - l-2% for the dominant distributions at snail and moderate z, increasing to bigger errors 
toward the large z region (where experimental errors increase) and for the numerically small sea- 
quarks, especially the heavy flavor ones. 

A separate question is the applicability of these distributions at smaller Q values, say 1 - 
2 GeV. Here, the real issue is the applicability of the QCD parton model itselfin a region where its 
theoretical basis - the factorization theorem (an asymptotic theorem) - is obviously questionable. 
Because this involves physics at the confinement scale, we cannot make any definitive statement 
on this issue. Phenomenologically, our parametrization is smooth and well behaved above Q = 
2GeV. Our recommendation is that, for these low values of Q, cross-sections calculated with our 
distributions should be regarded only as eztmpolated twist-2 QCD contributions which may or may 
not require additional terms due to higher twist (or non-perturbative) contributions before they 
can be directly compared to experimentally measured quantities. These additional contributions 
have been recently examined phenomenologically[l~ down to Q’ = 0.5GeV’ and appear to be 
quite small for 0.05 < z < 0.4, becoming more important as z increases to 1. 

Likewise, not much is known definitively about extrapolating parton distributions into the 
small- and large-x regions. Although there is intense current interest in these issues - particularly, 
the smalla behavior,[2q there is still no conclusive theory comparable to that on Q-dependence. 
Under this circumstance, we take a pure phenomenological approach to this issue and use the 
functionalform adopted to explore the range of predicted small-z behavior of physically interesting 
process (cf. next section). As explained before, our functional form is consistent with known 
theoretical understanding (for details, see Ref. [21]) an d ‘t 1 is more flexible than that used by other 
published parton distribution sets. 

9 The Small-a: Extrapolation 

A strong motivation for undertaking the task of this global fit project is to systematically explore 
our lack of knowledge of the parton distributions at low x. Most of published parton distribution 
sets use some assumed B1 parameters (cf. Eq.(5)) for the gluon and sea-quark distributions at a 
given Qo. The small-r behavior of the parton distributions so obtained depend sensitively to the 
values of B1 and to Qo so chosen. (See below.) Predictions on processes at present (S@S, Tevatron) 
and future (HERA, SSC) accelerators often rely on parton distributions at small z values much 
below those currently measured, hence they depend critically on implicit assumptions made about 

“Although our normal cut is 10 < Q’(GeVa) in data- fitting, we have verified that the predictions extrapolated 
to 5 < Q’(GeVz) still fit existing data rather well. 
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the functional form of these distributions at an arbitrarily chosen Qo - a fact not always noted by 
all users of these distributions. 

Jn this section we explore the small-z behavior of the parton distributions, which are consistent 
with current data, in two different ways which distinguish our approach from previous efforts. First, 
we leave the parameter Al (cf. Eq.(l)) for the gluon and sea-quarks as a free parameter in the 
data analysis, hence its value (at a fixed value Qo) is determined by the data rather than by an 
arbitrary assumption. Since the effective power Al changes rapidly with Q in the relatively low 
Q region where evolution starts, any assumption one makes is highly dependent on the choice of 
Qo. Our method does not prejudice this choice. Secondly, by introducing a logarithmic factor 
(lnz)! in the functional form, Eq.(l), we allow for the possibility of logarithmicextrapolation to 
the small-z region in addition to the traditional power-law extrapolation. This is logical, as the 
evolution equation naturally introduces logarithmic dependences of the parton distributions even 
if one starts with a pure power-law function. 

For a given selection of data sets we routinely perform fits with the A1 factor alone, with the AS 
factor alone, and with both as fitting parameters. Since available data in D.I.S. and D-Y processes 
involve a limited range in z, we are able to get good fits in all three cases. Within the (z, Q) range 
of current experiments the resulting parton distribution sets yield very similar D.I.S. structure 
functions and D-Y cross-sections; but they lead to different predictions far away from this range, 
especially for very small z. In this way, we can study the range of small- + behavior of parton 
distributions allowed by current data in a systematic and quantitative way. 

For illustration, in Fig.lOa we plot the structure function Fz and the gluon distribution at 
Q’ = lOGeVa in the z-range (lo-&, 10-l). The two representative parton distribution sets “Bl” 
and “B2” both fit the existing data (z > 0.03) but they have different Al - A3 exponents which 
give rise to quite different predictions in the I < 0.03 range. In FigJOb the same quantities are 
plotted at Q’ = 10’GeV. As expected, there is a migration of the partons to small I caused by 
the QZ evolution, so that differences are reduced as Q’ increases. In order to explicitly display the 
uncertainty on the small-z behavior associated with these two equally acceptable fits, we plot in 
Fig.11 the ratios of corresponding Fz(z, Q) and G(z, Q) obtained from the two fits at three values 
of Q over the z range as in the previous figure. We see that parton densities, and physical cross- 
sections derived from them, at I = 10m6 can differ by factors of 2 - 3 at the highest Q’ and by an 
order-of- magnitude at more moderate Q ‘. Since the HERA experiments are expected to measure 
the structure functions down to z = lo- ‘, Figs.10 & 11 illustrate how these experiments can 
contribute to narrow the uncertainties as they exist now. Before these distributions are measured 
at HERA, “predictions” on cross-sections for variousprocesses at SSC and LHC which depend on 
parton distributions at small z have to be considered in the context of the uncertainties described 
here. 

We note that the two fits used above are chosen for illustrative purposes only. They do not 
necessarily represent the full range of behavior allowed b current data. Detailed study focusing 
on this question will be pursued and reported elsewhere. [ J 11 
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10 W-, Z-, and Lepton-pair Production Cross-sections and Ra- 
tios at Collider Energies 

The real value of p&on distributions lies in its universal applicability to all high energy processes 
in the QCD framework. Of immediate interest is the use of parton distributions extracted from 
fixed-target D.I.S. and D-Y experiments to “predict” cross-sections of physical processes at current 
colliders. Since collider processes usually depend on combinations of parton distributions which are 
different from the fixed-target processes, and since the z-values involved may be beyond the original 
range, these new cross- sections can also be used to provide important constraints on the z- and 
the flavor-dependence of the parton distributions not otherwise available. We illustrate this point 
by presenting W-, Z-, and lepton-pair production cross-sections at current collider energies based 
on our parton distributions. All results are obtained in next-to-leading order QCD calculation. 

Figs.128 shows the differential cross-section in rapidity for W+ production, Fig.lZb shows that 
for 2 production, Fig.lZc shows the y-asymmetry in W+ production, and Fig.lZd shows the W/Z 
cross-section ratio in p - fj collision at 1.8GeV. The curves are obtained using the following par- 
ton distributions: Bl-fit (solid line), BZ-fit (dashed), MRSB (dot-dashed) *I, and DFLM-NLLA 
(dotted). We see that the spread of these carves is not large, except for the W/Z ratio at high 
values of g. This is understandable since the cross-section for W- and Z- production involve parton 
momentum fractions z well within the range measured by the fixed target D.I.S. and D-Y expa- 
iments. This spread is, however, bigger than the anticipated experimental uncertainty on these 
quantities in current and near-future runs. Thus, these precise measurements will contribute very 
useful independent information on the flavor-differentiation of parton distributions described in 
earlier sections. 

In Fig.13 we show next-to-leading order calculation of the y-distribution of lepton-pairs (D- 
Y) at the Tevatron energy for dimuon mass Q = 20GeV using the same parton distributions as 
above. In addition, we have included two additional curves based on the leading order EHLQ set-2 
and Duke-Owens set-l distributions for reference. Here we see a dramatic difference, especially 
between the prediction of the B2- fit distributions and the rest at high y values. This sensitivity is 
due to the contribution of the small-z parton distributions to the D-Y cross-section - especially 
in the forward-backward directions. This striking effect has been known for some time, based 
on crude inputs [221. The current calculation, using parton distributions known to be consistent 
with all current experiments, underlines the importance of the collider lepton-pair measurements 
in probing parton distributions at small-z. 

Acknowledgements 

The authors would like to express their sincere gratitude to members of the 1988 Snowmass Work- 
ing Group on Structure Functions and Parton Distributions for stimulating discussions and, in 
particular, to Heidi Schellman and Shuichi Kunori for valuable assistance in assembling the D.I.S. 
database. 

“The next-to-lading order hard matrix element available ia in the DIS sc h eme, whereas the MRS distributions 
are in the MS scheme. Unlike in the comparison section for D.I.S., WC did not m&c the necessary convcraion here 
because of the large amount of computing time required. 

13 



References 

[l] M. Glueck et al., 2. Phys. Cl3 119 (1982); D. Duke and 3. Owens, Phys. Rev. D30 49 (1984); 
E. Eichten et al., Ben Mod. Phys. SE 579 (1984) and Erratum 58 1065 (1986). 

[2] A.D. Martin, R.G. Roberts & W.J. Stirling, Phya. Rev. D37 1161 (1988), Mod. Phys. Zett. 
A4 1135 (1989). New parton distributions from this group became available after this work 
was completed, cf. P.N. Harriman, A.D. Martin, W.J. Stirling, and R.G. Roberts, Rutherford 
Lab preprint RAL/90/007. 

[3] M. Diemoe et al, Z. Phys. CSO, 21 (1988). 

[4] Wu-Ki. Tung et al., Proceedings of the 1988 Summer Study on High Energy Physics in the 
1990’s, World Scientific, 1990. 

[5] J.P.Berge et al., Preprint CERN-EP/89-103 (1989). 

[6] J.J.Aubert et al., Nucl. Pkys. B29S 740 (1987). 

[7] A.C. Benvenuti et al., Pkys. Z&t. B223 485 (1989) and CERN-EP/89-170,171, December, 
1989. 

[s] G. Curci, W.Furmmski, & R.Petronsio, Nucl. Pkys. B176, 27 (1980); W. Furmanski, & R. 
Petroneio, Phys. Zett. @7B, 437 (1980); E.G. Fl orates et al, Nucl. Phys. B192, 417 (1981) 
and references cited therein. 

[9] Cf. E.G. Floratos et al, Nucl. Phys. B192, 417 (1981) and references cited therein. 

[lo] Wu-Ki Tung, Nucl. Phys. BJlS, 378 (1989). 

[ll] K.Lang et al, Z. Phys. C33, 483 (1987); S.R. Mishra et al, in Proceedings of 14th Rencontres 
de Moriond, Mar. 1889. 

[12] J. Kubar, M. Le Bellac, J.L. Meunier and G. Plaut, Nacl. Phya. B175, 251 (1980). 

[13] A.S.Ito et al., Phys. Rev., D23, 604 (1981). 

[14] C.N.Brown et al., Phys. Rev. Zett., 63 371 (1988). 

[15] P. Aurenche et al, Pkys. Rev., DSQ, 3275 (1989). 

[16] J. Feltesse, in Proceedings of the XIV International Symposium on Zepton and Photon Znter- 
actions, Stanford, August 1989, World Scientific Pub. 

[17] Abramcwicz et al, Z. Phys., C17, 283 (1984); Z. Phya. C25, 29 (1984); Z. Phys. CS6, 443 
(1984) 

[18] Wu-Ki Tung,“Overview of Parton Distribution and the QCD Framework”, Fermilab preprint 
(to appear in Proceedings of Workshop on Hadron Structure Functions and Parton Disttibu- 
tione, Fermilab, April 1990, World Scientific Pub.) 

[19] See, for instance, A. MiIsztajn, contribution to Proceedinga of Workshop on Ha&on Stmc- 
tare Factions and Parton Distributions, Fermilab, April, 1990, World Scientific Pub. (to be 
published) 

14 



[20] See Proceedings of Workshop on Parton Distribution Functions at Small-z, DESY, May 1990, 
North Holland Pub. (to be published) 

[21] Wu-Ki Tung, preprint Fermilab-Conf-90/200-T (to appear in Proceedings of Workshop ora 
Porton Distribution Functions at Small-z, DESY, May 1990, North Holland Pub.) 

[22] F. Ohms and Wu-Ki Tung, “Small 2: Physics at the SSC and the Tevatron” in From Colliders 
to Super Colliders, ed. V. Varger and F. H&en, World Scientific (1987) 

[23] W. Furmanski & R.Petronzio, 2. Phys. Cll, 293 (1982). 

[24] G. Altarelli, R.K.EUis, & G.MartineRi, NucL Phgs. B145, 521 (1978); and ibid. B16’7, 461 
(1979). 



Tables 

Table la - Fit S - DIS scheme 
A(2,4) = 0.212GeV Q:=4GeVa 

1 d(val) u(val) 1 glum 1 u(sea) d(w) s c b t 

-40 
co 1.34 1.62 1.88 -0.99 -0.99 -0.99 -3.98 -6.28 - 13.08 
Cl -0.57 -0.33 -2.78 -1.54 -1.54 -1.54 0.72 2.62 8.54 
G -0.08 -0.10 0.13 0.10 0.10 0.10 -0.63 -1.18 _ 2.70 

Al 
co 0.15 0.11 -0.33 -0.33 -0.33 -0.33 -0.15 -0.18 - 0.40 
Cl 0.16 0.14 0.10 0.03 0.03 0.03 -0.06 0.02 0.31 
4 -0.02 -0.01 -0.04 -0.03 -0.03 -0.03 0.00 -0.03 - 0.12 

A1 
co 5.30 3.68 7.52 8.53 8.53 8.53 7.46 6.56 15.35 
Cl 0.43 0.53 -1.13 -1.08 -1.08 -1.08 0.96 1.40 - 11.83 
C2 0.06 0.03 0.04 0.39 0.39 0.39 -0.30 -0.38 4.16 

A3 
CO -1.96 -1.94 -1.34 -1.55 -1.55 -1.55 0.35 0.65 - 0.43 
Cl 1.08 0.87 2.92 2.02 2.02 2.02 0.89 1.13 3.18 
G2 -0.03 0.02 -0.49 -0.39 -0.39 -0.39 -0.04 -0.16 - 0.82 

Equivalent “Conventional Parametrization” Coefficients at Q.’ = 5.0GeVa 

Q.1) = cBO&(l - zp(l+ &z) 
BO -0.49 -o . 31f(z, 0.48 -2.65 -2.65 -2.65 0.00 0.00 0.00 
B1 0.43 0.36 -0.15 -0.14 -0.14 -0.14 0.00 0.00 0.00 
Bl 5.36 3.70 8.02 9.58 9.58 9.58 0.00 0.00 0.00 
83 10.68 11.82 8.20 13.60 13.59 13.59 0.00 0.00 0.00 
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I Table lb - Fit S - KB scheme 
A(2,4) = 0.212GeV Qj, = 4GeV2 

1 d(val) u(val) 1 glum 1 u(sea) d(w) s c b t 

An 
- CO 1.75 2.03 1.09 -0.14 -0.14 -0.15 -2.36 -2.19 - 24.77 

Cl -1.02 -0.78 -2.41 -1.98 -1.98 -1.98 -1.42 -3.86 - 23.00 
c, 0.05 0.03 -0.12 0.23 0.23 0.23 0.21 1.57 34.44 

Al 
CO 0.11 0.06 -0.24 -0.49 -0.49 -0.49 -0.49 -1.07 7.52 
Cl 0.26 0.24 0.08 0.02 0.02 0.02 0.44 1.56 0.48 
Cl -0.06 -0.04 0.02 -0.02 -0.02 -0.02 -0.22 -0.73 - 6.26 

-4 
co 6.20 4.43 5.97 10.24 10.24 10.23 9.00 11.30 - 99.51 
Cl -0.41 -0.18 -0.90 -1.43 -1.44 -1.44 -0.46 -7.20 - 16.45 
Cl 0.29 0.22 -0.35 0.44 0.45 0.45 0.29 3.85 97.19 

A3 
CO -2.35 -2.35 -0.64 -2.57 -2.57 -2.57 -1.74 -4.85 36.02 
Cl 1.68 1.52 2.71 2.32 2.32 2.32 3.93 10.51 16.51 
Cl -0.24 -0.19 -0.20 -0.47 -0.47 -0.47 -1.34 -4.36 - 40.40 

Equivalent “Conventional Parametrization” Coefficients at Q! = 5.0GeV’ 
-- = eBozB1(l - ~)~‘(l+ &z) 

Bo I 0.03 ,.,,f(+,Q:) 1 0.68 1 -2.26 -2.26 -2.26 0.00 0.00 0.00 

I & & I 0.53 6.08 0.46 4.33 I -0.14 5.88 I 10.12 -0.10 10.11 -0.10 10.11 -0.10 0.00 0.00 0.00 0.00 0.00 0.00 

B3 1 7.96 8.93 0.43 1 11.40 11.39 11.39 0.00 0.00 0.00 

17 



Figure Captions 

Fig. 1 Results of Bl-fit (solid) and E-fit (dashed) compared to BCDMS H2 measurement of Fa(z, Q). 

Fig. 2 Results of Bl-fit (solid) and E-fit (dashed) compared to EMC H2 measurement of Fz(z, Q). 

Fig. 3 Results of Bl-fit (solid) and E-fit (dashed) compared to CDHSW Iron measurement of 

Fz(z, Q). 

Fig. 4 Results of the S-fit compared to BCDMS D2 measurement of Fa(z, Q). 

Fig. 5 Results of the S-fit compared to EMC D2 measurement of Fz(+, Q). 

Fig. 6 Results of the S-fit compared to the E605 Drell-Yan cross section measurement. 

Fig. 7 Comparison of the EHLQ, Duke-Owens-2, MRS-B, DFLM, and present parametrizations 
of the parton distribution functions to BCDMS H2 measurements of Fz at four representative z 
values. 

Fig. 8 Comparison of +G(z) and m(z) 88 fit in the DIS scheme and as converted to the MSbar 
scheme. 
Fig 9. The shape parameters Ai for the different partons a8 a function of Z’(Q). 

Fig 10. Predicted values of Fz(z) and zG(z) from fits Bl and B2 at ultra low z for Qa = lOGeVa 
and Q1 = 10’GeVa . 

Fig 11. The ratio of predictions (the uncertainty) for &(z) and zG(+) as a function of z for three 
typical values of Q’. 

Fig 12. The predictions for W-production, 2 production, the W- production asymmetry, and the 
W/Z production ratio at the Tevatron Collider using the parton distribution function of MRS.B, 
DFLM, and the Bl- and B2- fits from the present analysis. 

Fig. 13. Prediction for low mass (Q = 20GeV) Drell-Yea pair production at the Tevatron Collider 
for parton distribution functions as in Fig. 12. 
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Appendix I: 
Definition of Parton Distributions in the MS and DIS Schemes 

We have mentioned in the text that parton distribution functions f”(z,p) are renormalization 
scheme dependent beyond the leading order. In applications to various physical processes, the 
scheme chosen for the parton distributions must match that for the hard cross-section in the QCD 

parton model formula. [la1 The same parton distribution in two different schemes differ by a well- 
defined expression which is nominally of one order higher in a.(Exceptions to this rule of thumb 
do exist, as will be mentioned later.) In this appendix, we define parton distributions used in the 
two schemes discussed in the text. 

The 783 scheme is defined by an “universal” presciption to facilitate perturb&w calculations 
independent of any physical process. It is used by most theorists in the calculation of hard matrix 
elements. Them parton distributions are guarantteed by their defmition to satisfy the momentum 
sum rule. In this scheme, the NLO formula for the Fz structure function’2 of virtual 7 deep inelastic 
scattering reads: 

&";r(l, 8) = f&a b:p,) t a, c$t,'"] t f& B a, c;f$= + o(a.2) (1) 

where C(‘), i = 0,l are the standard hard matrix elements in LO and NLO often called the Wilson 
coefficients.[g~ 231 On the right-hand side of this equation a sum over the quark flavor index is 
understood. 

The “DE” scheme Iz4] on the other hand, was defined specifically to make the relation between 
the parton distributions hd q as simple as possible. This is obtained from the above equation 
by absorbing all the NLO terms into the definition of fiIs: 

&'(z, Q) = f&s @ Cf, t o(a.') (4 

Thus the difference between the quark distributions in the DIS scheme and the m scheme is: 

f&s(l, Q) - f&b, Q) = 4f’ 8 C;f,= + fG @ C;;:“s) (3) 

No explicit label is given to the parton distributions on the right-hand side since these terms are 
of one order higher in a,, thus either scheme will do. 

Eq. (2) does not yet define the gluon distribution in the DIS scheme. It is conventional to require 
that the momentum sum rule be preserved in the DIS scheme as well. This requirement fies the 
second moment of the glum distribution only. To complete the definition of the gluon distribution, 
it is convenient to generalize the condition on the second moment to all moments.[31 This is the 
definition we adopt. We then obtain: 

f&+, Q) - f&(z, Q) = a.(fq’ 8 C;;;= t fG @ Ci;$=, (4) 

where Q, denotes the singlet quark distribution and, again, the scheme label is dropped on the 
right- hand side. 

These equations allow us to convert parton distributions from one scheme to the other. Thus, 
in principle, one can perform the calculation in either scheme - consistently - and then convert the 

“The precise definition of Fa haa evolved with time, causing canfurion sometimes. We use the definition of [23] 
(cf. also [4]) 



results to the other scheme if necessary. We followed this procedure in the text of this paper. It is 
worth pointing out, however, that caution must be exercised under certain conditions in practical 
applications of this formalism. We encountered one such circumstance in Sec. 6 when we compared 
the glum distributions from different parton distribution sets and from the same set in two different 
schemes. Fig. 8 showed a significant difference between the same distribution in the two different 
schemes at the high end of z. Let us see how this can be understood from Eq. (4). Nominally, both 
terms on the right-hand side of the equation are of one higher order in a, then the individual terms 
on the left-hand side - only the difierence between the two is expected to be small. Rowever in 
reality, one expects the (valence) quark distribution to be much harder than the glum distribution. 
Thus, at large x, the quark term on the right-hand side can become just as big or even bigger then 
the softer of the two glum distributions on the left-hand side in spite of the extra power of a.. 
When this happens, the equality forces the other term on the left-hand side to be relatively hard! 
This is precisely what we found in Fig.8. 
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Appendix II 

Following are the parton distribution function sets E, Bl, and B2 discussed in the main body of this 
report. The parton distributions are given both in the DIS and renotiation schemes. Note that 
Fit Bl and B2 are. representative of the variation in low-x extrapolation allowed by the currently 
available data. 

As a reminder, the general expression for each parton flavor is: 

zf”(z, Q) = eA:zA:(l - z)~: lnA:(l + i) 0) 

where the shape parameters are defined as: 

with i = 0 - 3, and 

Table II1 - Fit E - DIS Scheme I 
A(2,4) = 0.15X&V Qi = 4GeV2 

1 d(val) u(val) 1 gluon 1 u(sea) d(see) 8 c b t 

-40 
co 1.43 1.69 2.11 -0.84 -0.84 -0.84 -3.87 -6.09 - 12.56 
Cl -0.65 -0.33 -3.01 -1.65 -1.65 -1.65 0.85 2.81 8.69 
G -0.08 -0.11 0.18 0.12 0.12 0.12 -0.73 -1.34 - 2.93 

Al 
co 0.16 0.11 -0.33 -0.32 -0.32 -0.32 -0.15 -0.17 - 0.38 
4 0.16 0.14 0.10 0.02 0.02 0.02 -0.07 0.01 0.30 
4 -0.02 -0.01 -0.04 -0.03 -0.03 -0.03 0.00 -0.03 - 0.12 

A2 
CO 6.17 3.69 7.93 8.96 8.96 8.96 7.83 6.75 14.62 
Cl 0.43 0.54 -1.40 -1.24 -1.24 -1.24 1.00 1.74 - 11.27 
Cl 0.06 0.03 0.09 0.45 0.45 0.45 -0.36 -0.56 4.29 

A3 
CO -1.94 -1.99 -1.51 -1.70 -1.70 -1.70 0.21 0.54 - 0.41 
Cl 1.12 0.90 3.14 2.15 2.15 2.15 0.93 1.15 3.19 
G -0.02 0.02 -0.55 -0.43 -0.43 -0.43 -0.03 -0.16 - 0.87 

(2) 

(3) 
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h&4) = 0.155GeV Q:=4GeV' 
1 d(val) u(A) 1 &on 1 u(sea) d(m) s c b t 

Table II2 - Fit E - ?Z scheme I 

A0 
CO 1.79 2.12 1.58 -0.10 -0.10 -0.11 -2.53 -3.91 _ 6.57 
Cl -1.05 -0.85 -2.68 -2.29 -2.29 -2.29 -1.16 -0.19 1.15 
G 0.03 0.07 0.01 0.35 0.35 0.35 0.12 -0.24 - 0.48 

A 
co 0.12 0.02 -0.28 -0.43 -0.43 -0.43 -0.35 -0.44 - 0.90 
Cl 0.24 0.32 0.05 0.09 0.09 0.09 0.26 0.36 0.95 
Cl -0.04 -0.08 0.00 -0.06 -0.06 -0.06 -0.15 -0.17 - 0.33 

-42 
CO 7.03 4.46 6.84 10.43 10.43 10.43 8.67 6.85 7.27 
Cl -0.38 -0.28 -0.93 -2.14 -2.14 -2.14 -0.10 2.15 - 0.28 
ca 0.27 0.29 -0.26 0.73 0.73 0.73 0.27 -0.74 0.28 

A3 
CO -2.29 -2.57 -1.08 -2.49 -2.49 -2.48 -1.24 -1.56 - 5.07 

4 1.63 1.82 2.76 2.80 2.80 2.80 3.26 4.07 9.02 
C-J -0.18 -0.33 -0.32 -0.67 -0.67 -0.67 -1.06 -1.24 - 2.75 

Table II3 - Fit Bl - DIS Scheme 
A(2,4) = 0.194GeV Q;=4GeVa 

1 d(val) u(val) 1 glum 1 u(sea) d(m) s c b t 

A0 
co 1.30 1.59 1.48 -1.08 -1.08 -1.08 -4.22 -6.42 - 12.92 

Cl -0.57 -0.34 -2.49 -1.33 -1.33 -1.33 0.88 2.67 8.33 
G -0.09 -0.10 0.04 -0.03 -0.03 -0.03 -0.69 -1.21 - 2.68 

Al 
co 0.19 0.14 -0.14 -0.13 -0.13 -0.13 -0.02 -0.09 -0.36 
Cl 0.15 0.13 -0.11 -0.21 -0.21 -0.21 -0.17 -0.03 0.32 
Cl -0.02 -0.01 0.03 0.06 0.06 0.06 0.03 -0.02 - 0.13 

-42 
co 5.24 3.65 6.75 8.40 8.39 8.39 7.29 6.47 15.74 
4 0.44 0.53 -0.54 -0.51 -0.50 -0.50 1.08 1.39 - 12.73 
G 0.05 0.03 -0.15 0.07 0.07 0.07 -0.39 -0.42 4.51 

A3 
CO -1.81 -1.81 -0.50 -0.88 -0.88 -0.88 0.90 1.03 - 0.30 
Cl 1.06 0.86 2.13 1.18 1.18 1.18 0.50 1.00 3.35 
G -0.02 0.02 -0.24 -0.05 -0.05 -0.05 0.08 -0.14 - 0.91 
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I Table 114 - Fit Bl - E scheme 
A(2,4) = 0.194GeV Q; = 4GeV” 

1 d(A) u(val) 1 glum 1 +a) d(m) 8 c b t 

Ao 
CO 1.66 2.00 0.92 -0.60 -0.60 -0.60 -2.94 -2.95 - 3.88 
Cl -0.94 -0.81 -2.28 -1.76 -1.76 -1.76 -1.12 -3.21 - 1.59 
C2 0.03 0.05 -0.07 0.13 0.13 0.14 0.15 1.38 - 0.05 

Al 
CO 0.18 0.09 -0.07 -0.13 -0.13 -0.13 -0.19 -0.62 - 0.78 
Cl 0.18 0.24 -0.16 -0.27 -0.27 -0.27 0.16 0.99 - 0.07 
G -0.03 -0.05 0.06 0.09 0.09 0.09 -0.13 -0.51 0.40 

A2 
CO 6.04 4.40 5.79 9.31 9.31 9.31 7.94 9.97 3.80 
4 -0.25 -0.20 -0.68 -0.94 -0.94 -0.94 -0.05 -6.33 2.13 
Cl 0.23 0.25 -0.23 0.21 0.21 0.21 0.27 3.71 0.96 

A3 
CO -2.09 -2.24 -0.01 -1.18 -1.18 -1.18 -0.46 -3.00 -2.37 
4 1.42 1.53 1.93 1.31 1.31 1.31 2.93 8.42 0.48 
G -0.14 -0.23 -0.11 -0.10 -0.10 -0.10 -1.05 -3.61 2.30 

Table II5 - Fit B2 - DIS Scheme 

t I 
h(2,4)= 0.191GeV Q; = 4GeV2 

d(val) u(val) 1 gluon 1 +a) d(m) s c b t 

co 1.38 1.64 1.52 -0.85 -0.85 -0.85 -3.74 -6.07 - 12.08 
Cl -0.59 -0.33 -2.71 -1.43 -1.43 -1.43 0.21 2.33 7.31 
G4 -0.08 -0.10 0.15 -0.03 -0.03 -0.03 -0.50 -1.15 - 2.35 

Al 
co 0.18 0.09 -0.72 -0.82 -0.82 -0.82 -0.58 -0.52 - 0.73 
Cl 0.16 0.14 0.45 0.35 0.35 0.35 0.24 0.22 0.54 
C2 -0.02 -0.01 -0.15 -0.09 -0.10 -0.10 -0.07 -0.07 - 0.18 

-42 
CO 5.40 3.74 7.75 9.19 9.19 9.19 9.63 8.33 21.14 
Cl 0.42 0.54 -1.56 -0.92 -0.92 -0.92 -1.13 0.28 - 19.17 
Cl 0.06 0.03 0.16 0.12 0.12 0.12 0.25 -0.28 6.64 

.43 

co -1.91 -2.02 -2.18 -2.76 -2.76 -2.76 -1.09 -0.52 - 1.92 
Cl 1.11 0.88 3.75 2.56 2.56 2.56 2.10 1.91 4.59 
Cl -0.03 0.02 -0.76 -0.40 -0.40 -0.40 -0.33 -0.31 - 1.25 
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Table II6 - Fit B2 - &KS scheme I 
A(2,4) = 0.191GeV 

1 d(val) II(&) 1 gluon 1 u(m) d(m) 
Q; = 4GeV2 
s c b t 

Ao 
CO 1.77 2.04 0.74 -0.43 -0.43 -0.43 -3.07 -4.44 - 7.03 

Cl -0.98 -0.75 -2.44 -1.96 -1.96 -1.96 -1.03 -0.13 1.10 
G 0.03 0.02 0.07 0.20 0.20 0.20 0.04 -0.23 - 0.41 

AI 
CO 0.13 0.03 -0.59 -0.86 -0.86 -0.86 -0.66 -0.68 - 1.13 

Cl 0.23 0.26 0.42 0.43 0.43 0.43 0.45 0.50 1.07 

C2 -0.04 -0.05 -0.15 -0.14 -0.14 -0.14 -0.17 -0.18 - 0.35 

A2 
co 6.28 4.48 6.31 10.16 10.16 10.16 8.57 6.90 8.56 

Cl -0.34 -0.15 -1.62 -1.91 -1.91 -1.91 -0.32 1.46 - 2.33 

Cl 0.26 0.21 0.18 0.53 0.53 0.53 0.17 -0.53 0.87 

A3 
co -2.30 -2.47 -1.37 -3.14 -3.14 -3.14 -1.68 -1.82 - 5.47 

Cl 1.60 1.52 3.56 3.14 3.14 3.14 3.48 4.11 9.08 
G -0.18 -0.19 -0.77 -0.68 -0.68 -0.68 -0.98 -1.16 - 2.66 
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Appendix III 

Table III1 (DIS scheme) and III2 ( scheme) represent a next-to- leading order fit (SN-fit) of the 
combined data which assumes a non- SU(3j-symmetric sea as suggested by some neutrino di-muon 
studies. The ratio of 2s/(u+d) is set at 0.50 for the input distribuitions. Table III3 represents a 
leading order fit of the combined data (SL-fit) which should b e used in applications where leading 
order hard scattering matrix elements are employed. 

A(2,4)= 0.237GeV Q;=4GeV" 
1 d(val) u(val) 1 gluon 1 u(sea) d&a) s c b 

Ao 

t 

co 1.84 2.08 0.31 -1.13 -1.13 -1.82 -3.69 -5.06 - 9.92 

Cl -0.97 -0.66 -1.84 -1.26 -1.26 -1.40 -0.47 0.39 4.60 
G 0.03 -0.02 -0.06 -0.01 -0.01 0.09 -0.10 -0.35 - 1.53 

AI 
co 0.12 0.02 -0.10 -0.15 -0.15 -0.18 -0.15 -0.25 -0.38 
Cl 0.22 0.19 -0.10 -0.16 -0.16 -0.06 0.04 0.16 0.24 
G -0.04 -0.01 0.01 0.03 0.03 -0.01 -0.05 -0.08 - 0.08 

A2 
CO 6.34 4.53 4.18 8.43 8.43 7.94 5.72 4.42 - 1.27 
Cl -0.34 -0.04 0.05 -0.39 -0.39 -0.82 0.93 2.38 9.17 
G 0.25 0.15 -0.12 0.05 0.05 0.30 -0.11 -0.63 - 2.88 

A3 
CO -2.40 -2.51 0.34 -0.64 -0.64 -0.56 0.26 -0.14 - 1.60 
Cl 1.53 1.24 1.64 1.01 1.01 1.65 1.85 2.72 4.40 
G -0.16 -0.05 -0.16 -0.06 -0.06 -0.31 -0.50 -0.75 - 1.08 



Table III3 - Fit SL - Leadine Order I 
A(1,4) = 0.144GeV Q; = 4GeV= 

1 d(val) u(val) 1 glum 1 u(sea) d(m) s c b t 

Ao 
co 1.38 1.67 1.62 -0.81 -0.81 -0.81 -3.62 -6.16 - 12.68 

Cl -0.62 -0.33 -3.17 -1.13 -1.13 -1.13 0.03 2.37 8.36 
Cl -0.10 -0.13 0.25 -0.26 -0.26 -0.26 -0.48 -1.24 - 2.89 

A1 
CO 0.16 0.08 -0.25 -0.07 -0.07 -0.07 -0.06 -0.11 - 0.35 
Cl 0.19 0.17 -0.01 -0.46 -0.46 -0.46 -0.21 -0.05 0.28 
Cl -0.02 -0.01 0.00 0.16 0.16 0.16 0.05 -0.02 - 0.12 

A2 
CO 5.40 3.75 7.01 9.19 9.19 9.19 8.30 6.49 14.87 
Cl 0.59 0.70 -0.90 0.35 0.35 0.35 -0.60 1.28 - 12.56 

G 0.03 0.00 -0.08 -0.49 -0.49 -0.49 0.25 -0.41 4.75 

A3 

co -1.97 -2.09 -0.79 -0.89 -0.89 -0.89 0.16 0.71 -0.17 
Cl 1.24 0.98 2.90 0.33 0.33 0.33 1.26 1.37 3.39 
Cl -0.05 0.02 -0.54 0.40 0.40 0.40 -0.15 -fl.zfi - “~Qli - - - -. - - 
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